basic education

Department:
Basic Education
REPUBLIC OF SOUTH AFRICA

NATIONAL SENIOR CERTIFICATE

GRADE 12

AGRICULTURAL SCIENCES P1

NOVEMBER 2022

MARKING GUIDELINES

MARKS: 150

These marking guidelines consists of 11 pages

SECTION A

QUESTION 1

1.1	1.1.1	$C \checkmark \checkmark$
	1.1.2	B $\checkmark \checkmark$
	1.1.3	A $\checkmark \checkmark$
	1.1.4	D $\checkmark \checkmark$
	1.1.5	$C \checkmark \checkmark$
	1.1 .6	$B \checkmark \checkmark$
	1.1 .7	$D \checkmark \checkmark$
	1.1 .8	$A \checkmark \checkmark$
	1.1 .9	$B \checkmark \checkmark$
		1.1 .10
		$C \checkmark \checkmark$

$$
\begin{equation*}
(10 \times 2) \tag{20}
\end{equation*}
$$

1.2 1.2.1 B only
1.2.2 A only $\checkmark \checkmark$
1.2.3 None $\checkmark \checkmark$
1.2.4 None $\checkmark \checkmark$
1.2.5 Both A and B $\checkmark \checkmark$
1.3 1.3.1 Passive absorption/diffusion $\checkmark \checkmark$
1.3.2 Quarantine/isolation $\checkmark \checkmark$
1.3.3 Adrenalin $\checkmark \checkmark$
1.3.4 Semen $\checkmark \checkmark$
1.3.5 Vagina $\checkmark \checkmark$
1.4 1.4.1 Ideal/complete/egg \checkmark
1.4.2 Knife/scalpel \checkmark
1.4.3 Ectoderm \checkmark
1.4.4 Mating/copulation \checkmark
1.4.5 Mitosis \checkmark

SECTION B

QUESTION 2: ANIMAL NUTRITION

2.1 Stomach compartments in farm animal

2.1.1 \quad Naming the farm animal
Cattle/sheep/goat \checkmark
2.1.2 Identification of the letter

$$
\begin{array}{ll}
\text { (a) } & C \checkmark \\
\text { (b) } & B \checkmark \tag{1}
\end{array}
$$

2.1.3 Justification of animal surviving on food poor in vitamins
Stomach has rumen micro-organisms \checkmark that can synthesise
vitamins \checkmark
2.1.4 Letters indicating the sequence of feed flow

$$
\begin{equation*}
\mathrm{B} \checkmark \longrightarrow \mathrm{C} \checkmark \longrightarrow \mathrm{~A} \checkmark \tag{3}
\end{equation*}
$$

$2.2 \quad$ Nutrient deficiencies
2.2.1 Identification of the mineral deficient in

> C - Zinc/Zn \checkmark
> D - Iron/Fe \checkmark
2.2.2 Naming of the deficiency symptoms

B - Osteomalacia/porous bones \checkmark
E - Goitre/enlarged thyroid gland \checkmark
2.2.3 Classification of vitamin A

Fat-soluble vitamin \checkmark
2.2.4 TWO methods of supplementing vitamin deficiency in A

- Injection \checkmark
- Dosing/water based vitamin A mixed with drinking water \checkmark
- Supplementing the ration \checkmark (Any 2)
2.3 Digestibility co-efficiency trial
2.3.1 Type of farm animal

Animal A - Non-ruminant/monogastric farm animal \checkmark
2.3.2 Reason

Feed is less digested/low digestibility co-efficient/stomach of the animal is not adaptable to digest crude fibre/simple stomach/13\%/2 kg of the feed was digested and $87 \% / 13 \mathrm{~kg}$ was excreted \checkmark

2.3.3 TWO factors that have influenced digestibility of feed

- Type/composition of feed \checkmark
- Type of animal \checkmark
- Individuality
- Preparation of the feed \checkmark
- Age of the animal
- Age of the plant \checkmark
- Quantity of feed consumed \checkmark
(Any 2)
2.3.4 TWO methods of improving digestibility of wheat straw
- Pelleting \checkmark
- Supplementing/mixing with additives/molasses/urea/ ammonification
- Grinding \checkmark
(Any 2)
(2)

2.4 Composition of a feed

2.4.1 Calculation of the nutritive ratio

TDN $=55 \%+15 \%+5 \%=75 \%$
$N R=1: \frac{\% T D N-\% D P}{\% D P}$
$N R=1: \frac{75 \%-15 \%}{15 \%}$
$N R=1: 4 \checkmark$
OR
DNNS $=75 \%-15 \%=60 \% \checkmark$
$N R=1: \frac{\% D N N S}{\% D P}$
$N R=1: \frac{60 \%}{15 \%}$
$N R=1: 4 \checkmark$
$\begin{array}{ll}\text { 2.4.2 } & \text { Suitability of feed } \\ & \text { Suitable for growth/production/reproduction } \checkmark\end{array}$
2.4.3 Reason

High in protein/has a narrow nutritive ratio/less than 1:6 \checkmark

2.5 Energy flow

$\begin{array}{ll}\text { 2.5.1 } & \text { Name of the energy in C } \\ & \text { Net energy/NE } \checkmark\end{array}$

2.5.3 Calculation of digestible energy and energy lost through heat

(a) Calculation of digestible energy

Gross energy - energy lost in faeces
$=1000 \mathrm{~kJ}-150 \mathrm{~kJ} \checkmark$
$=850 \mathrm{~kJ}$
(b) Calculation of amount of energy lost through heat

Metabolic energy - net energy
$=800 \mathrm{~kJ}-550 \mathrm{~kJ} \checkmark$
$=250 \mathrm{~kJ} \checkmark$
2.5.4 TWO aims of calculating the energy value of the feed

- To determine the animal's diet \checkmark
- To determine the feeding standards \checkmark
- To determine the ration formulation \checkmark

QUESTION 3 : ANIMAL PRODUCTION, PROTECTION AND CONTROL

3.1 Temperature ranges and the expected growth rates
3.1.1 Identification of animals that need an environment with housing facilities - Pigs \checkmark
3.1.2 Reason

- Growth rate shows a substantial decrease \checkmark with a slight decrease in temperature \checkmark
- Growth rate shows a substantial increase \checkmark with a slight increase in temperature \checkmark (Any 1)

3.1.3 Line graph

CRITERIA/RUBRIC/MARKING GUIDELINES

- Correct heading \checkmark
- X-axis: Correctly calibrated and labelled (Temperature) \checkmark
- Y-axis: Correctly calibrated and labelled (Growth rate) \checkmark
- Line graph \checkmark
- Correct units (kg and $\left.{ }^{\circ} \mathrm{C}\right)$
- Accuracy ($80 \%+$ correctly plotted) \checkmark
3.2 Equipment in a broiler production unit
3.2.1 Indication of equipment
(a) Insulation material on the roof \checkmark
(b) Electric heaters \checkmark
(c) Fans on the roof and walls/foldable curtains \checkmark
3.3 Types of intensive chicken production systems

3.3.2 TWO factors leading to increased production other than nutrition
- Environment \checkmark
- Reproduction/breeding \checkmark
- General enterprise management \checkmark (Any 2)
$3.4 \quad$ Type of animal handled
3.4.1 Chicken/poultry/fowl \checkmark(1)
3.4.2 Sheep/goat \checkmark(1)
3.4.3 Pigs \checkmark(1)
3.5 Seasonal trends of parasite infestation
3.5.1 Identification of the season
Summer \checkmark(1)
3.5.2 ONE possible reason for the higher parasite infestation- Conducive environmental conditions for parasites to breed \checkmark
- Poor herd management \checkmark
(Any 1)
(1)
3.5.3 TWO economic impacts of parasites
- Stock losses \checkmark- Loss of production/reproduction \checkmark
- Degrading of carcasses \checkmark- Increased production costs \checkmark
- Loss of income/profit \checkmark
(Any 2)(2)
3.5.4 TWO good herd management practices
- Adequate feeding \checkmark- Well planned health programme/chemical/biological control \checkmark- Avoiding breeding places of parasites/wet areas \checkmark- Practice rotational grazing \checkmark- Avoid keeping animals in infested pens- Good clean/hygienic practices
- Creating an environment for natural enemies \checkmark
- Using/selecting/breeding more resistant animals \checkmark- Burning of veld and pasture fields \checkmark(Any 2)
(2)
3.6 The life cycle of two different parasites
3.6.1 Classification of the parasite in DIAGRAM B Internal/endo parasite \checkmark
3.6.2 Naming the parasites that are represented by DIAGRAM A - Tapeworm
DIAGRAM B - Liver fluke/fluke worm \checkmark(1)
3.6.3 TWO biological measures of controlling liver fluke- Creating an environment for natural enemies \checkmark- Introduction of dung beetles/micro-fungi \checkmark- Breeding parasite resistant animals \checkmark(Any 2)(2)
3.7 Different symptoms of diseases that affect farm animals
3.7.1 Indication of diseases
ANIMAL 1 - Anthrax(1)
ANIMAL 2 - Red water \checkmark(1)
3.7.2 Identification of the animal
Animal $1 \checkmark$ (1)
3.7.3 Indication of the animal with non-infectious disease
Animal $2 \checkmark$(1)
3.7.4 Name of the vector
Blue tick \checkmark(1)

QUESTION 4: ANIMAL REPRODUCTION

4.1 The accessory sex glands

4.1.1 Prostate \checkmark
4.1.2 Cowper's glands \checkmark

4.1.3 Seminal vesicle \checkmark

4.2 Part of the reproductive system

4.2.1 Identify the following
(a) Part I-Mid piece \checkmark
(b) Part H-Tail \checkmark
(c) Process taking place in 1-Ovulation \checkmark
(d) Process taking place in 2 - Fertilization \checkmark
4.2.2 The hormone responsible for the process in 1 to take place Luteinizing hormone/LH \checkmark
4.2.3 ONE function of structure \mathbf{D}

- Produce female gametes/egg cells/ova/oogenesis/ ovigenesis \checkmark
- To produce female sex hormones (Any 1)
4.2.4 ONE function of fluid in B
- Protects the embryo from injuries/shock absorber
- Hydration/prevents dehydration/drying out of the foetus \checkmark
- Lubricates the birth canal during parturition \checkmark
- Thermo regulation \checkmark
- Prevents the embryo to attach to other tissues \checkmark (Any 1)

4.2.5 Description of how the acrosome enables sperm penetration
 Part F - Releases an enzyme \checkmark that break the egg wall for the sperm cell to enter \checkmark

4.2.6 The process that leads to formation of the sperm cell Spermatogenesis \checkmark

4.3 Artificial Insemination (Al)

4.3.1 The phase of oestrus during which Al could be performed

Oestrus/met-oestrus \checkmark
4.3.2 TWO methods to detect heat in cows

- Chin ball marker \checkmark
- Tail chalking \checkmark
- Heat mount/watching detectors
- Heat observation \checkmark
- Pedometer \checkmark
- Good record keeping
- The use of teaser animals \checkmark
(Any 2)
4.3.3 TWO characteristics of good quality semen
- Opaque/milky in colour \checkmark
- Sticky \checkmark
- Less than 15% dead sperm cells \checkmark
- No deformed sperm cells/deformities \checkmark
- No blood in semen \checkmark
- Healthy sperm cells \checkmark
- Viable sperm cells \checkmark
- High concentration of sperm cells \checkmark (Any 2)

4.3.4 TWO disadvantages of AI

- Spread of diseases if semen is not tested \checkmark
- Inexperience/unskilled operator may cause damage \checkmark
- Decreased genetic variation \checkmark
- Some heifers are difficult to inseminate successfully \checkmark
- May not give the desirable results
- Higher management demands
- Undesirable traits/congenital defects may be transferred to more offspring \checkmark
- Labour intensive \checkmark
- Time consuming \checkmark
- Expensive procedure
- Difficult under extensive production systems \checkmark (Any 2)
4.4 The different reproductive processes that occur in a dairy cow
4.4.1 Identification of curve A

Lactation curve \checkmark
4.4.2 Indication of the reproductive process and pregnancy stage
(a) Months 3 to 12-Pregnancy/gestation
(b) Stage of the process - Foetal stage \checkmark
4.4.3 Identification of the month

Month 12 V
4.4.4 TWO causes of abortion

- Malnutrition \checkmark
- Injuries \checkmark
- Hormonal disturbances/stress conditions \checkmark
- Toxins/poisonous substances/laxatives/allergies/ clovers high in oestrogen/immunization of pregnant animals \checkmark
- Diseases/infections/high fever \checkmark
- Multiple births \checkmark
- Genetic factors \checkmark
- Transportation/moving of pregnant animals \checkmark
- Embryo abnormalities \checkmark
(Any 2)
4.4.5 $\quad \begin{aligned} & \text { Reason for drying off pregnant lactating cows before the next } \\ & \text { lactation }\end{aligned}$ lactation
- For tissues in the mammary gland to recover \checkmark
- To store body reserves/to prepare for the next lactation \checkmark
- Supply the foetus with nutrients \checkmark
(Any 1)
4.5 Different techniques used in animal reproduction
4.5.1 Reproductive techniques
- 1 - Synchronization of oestrus
- 2 - Embryo transfer/ET \checkmark
- 3-Cloning/nuclear transfer \checkmark
4.5.2 TWO hormones used in technique 1
- Prostaglandin \checkmark
- Gonadotropin-releasing hormone (GnRH) \checkmark
- Progestin (synthetic progesterone) \checkmark
- Oestradiol
- MGA/Melengestrol acetate \checkmark
(Any 2)
4.5.3 Naming the two female animals in technique 2
- Donor/superior cow \checkmark
- Recipient/inferior/surrogate cow \checkmark

4.5.4 The aim of cloning

- To preserve/revive endangered species
- Rapid increase of animals with superior genetic traits \checkmark
- For medical reasons \checkmark
- To preserve and extend superior genes \checkmark
- To create a replica/genetically identical organisms \checkmark (Any 1) (1)

